FINAL EXAMINATION

Chemistry 3B
Professor K. Peter C. Vollhardt
May 20, 1998

Name:

(Print first name before second! Use capital letters)

Please check the name of your TA and corresponding section number. Complete the remaining information if applicable.

111 Jong, Kimmy ______ 311 Chan, Gina ______
112 Yun, Shine Sun ______ 312 Chiu, Anita ______
113 Toochnida, Tab ______ 313 Lemieux, George ______
211 Cho, Joanne ______ 411 Upasani, Sayli ______
212 Ong, Angeline ______ 412 Ong, Angeline ______
213 Yu, Jerry ______ 413 Mar-Tang, Roger ______
301 Chan, Gina ______ 511 Wu, Jack ______
302 Goon, Scarlett ______ 512 Cho, Joanne ______
303 Wasser, Ian ______ 601 Lecture Only ______
Making up an I Grade ______

(If you are, please indicate the semester in which you took previous Chem 3B)

Please write the answer you wish to be graded in the spaces provided. Do scratch work on the back of the pages. This test should have 20 pages. Check to make sure that you have received a complete exam. A good piece of advice: read carefully over the questions (at least twice); make sure that you understand exactly what is being asked; avoid sloppy structures or phrases, it is better to be pedantic in accuracy! Grades will be posted 9 am, Monday, May 25, outside 320 Latimer Hall (Lab B). Good luck and have a good summer!

<table>
<thead>
<tr>
<th>Subtotals</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV. (a)</td>
<td>I.</td>
</tr>
<tr>
<td>(b)</td>
<td>(a)</td>
</tr>
<tr>
<td>(c)</td>
<td>(b)</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>______</td>
</tr>
<tr>
<td></td>
<td>______</td>
</tr>
<tr>
<td></td>
<td>______</td>
</tr>
<tr>
<td></td>
<td>______</td>
</tr>
<tr>
<td></td>
<td>V.</td>
</tr>
<tr>
<td></td>
<td>(c)</td>
</tr>
<tr>
<td></td>
<td>(e)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>______</td>
</tr>
<tr>
<td></td>
<td>VI.</td>
</tr>
<tr>
<td></td>
<td>______</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>______</td>
</tr>
</tbody>
</table>
I. [30 Points] Write detailed mechanisms for the hydrolyses of methyl acetate in acid (a) and base (b).

(a) \[
\text{CH}_3\text{COCH}_3 + \text{H}_2\text{O} \xrightarrow{\text{H}^+} \text{CH}_3\text{COH} + \text{CH}_3\text{OH}
\]

(b) \[
\text{CH}_3\text{COCH}_3 + \text{Na}^+ \cdot \text{OH}^{-} \rightarrow \text{CH}_3\text{CO}^-\text{Na}^+ + \text{CH}_3\text{OH}
\]
II. [100 Points; (a) - (j) 5 Points each, (k) - (o) 10 Points each] Add the missing components (starting materials, reagents, or products) of the following reactions in the boxes provided. Aqueous work-up (when required) is assumed to be part of a step. It is not part of any answer.

(a) \[\text{CH}_3\text{OH} \quad \text{CH}_3\text{SO}_3\text{H} \]

(b) \[\text{O} \quad \text{CH} \]

(c) \[\Delta \]

(d) \[\text{C}_6\text{H}_5\text{O} \]

(e) \[\text{Cl} \]

(f) \[\text{H}^+, \text{CH}_3\text{OH} \]
Chemistry 3B, Final Examination

(g)
\[\text{R} -
\text{C} = \text{O} \rightarrow \text{CH}_3 \text{NH} \rightarrow \text{CH}_3 \text{NH} \]

(h)
\[\text{CH}_3 \text{CH}_2 \text{C} = \text{O} + \text{R} \rightarrow \text{CH}_3 \text{CH} = \text{CH}_2 \rightarrow \text{R} + \text{R} \]

(i)
\[\text{CH}_3 \text{NH}_2 \rightarrow \text{R} \]

(j)
\[\text{R} + \text{R} \rightarrow \text{R} \quad \text{OH, H}_2\text{O} \rightarrow \text{R} \]

(k)
\[\text{NO}_2 \quad \text{CH}_3 \rightarrow \text{R} \quad \text{CN} \rightarrow \text{R} \]

(l)
\[\text{CH}_3 \text{C} = \text{O} \rightarrow \text{R} \rightarrow \text{CH}_3 \text{C} \]

4
(m)
\[
\text{CH}_3\text{CH}_2\text{OH} \xrightarrow{\begin{array}{c}
1. \text{PBr}_3 \\
2. \text{NaCN} \\
3. \text{MgBr} \\
4. \text{H}^+, \text{H}_2\text{O}
\end{array}} \]

(n)
\[
\text{CH}_2=\text{CH}-\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2
\]
\[
\xrightarrow{\begin{array}{c}
1. \Delta \\
2.
\end{array}} \]
\[
\text{CH}_3\text{COCH}_3
\]

13C NMR: \(\delta = 53.6, 74.6, 152.3 \) ppm

(o)
\[
\text{C}_6\text{H}_{12} \xrightarrow{\begin{array}{c}
1. \text{Br}_2, \text{hv} \\
2. \\
3. \text{CO}_2 \\
4. \\
5. \text{CH}_3\text{NH}_2
\end{array}} \]
\[
\text{CH}_3\text{CONHCH}_3
\]
III. [90 Points] Treatment of lactone A with HBr in ethanol gave a new compound B.

\[
\begin{align*}
\text{A} & \xrightarrow{\text{HBr, CH}_3\text{CH}_2\text{OH}} \text{B} \\
\end{align*}
\]

Its spectral data are depicted below.

(a) What is B? (Draw in the box provided.)

\[
\begin{align*}
\text{C} & \quad \text{B} \\
\end{align*}
\]

(b) Interpret the spectral information as requested in the spaces provided.
1. IR spectrum of B

Assign the following peaks to their respective (vibrating) bonds:

Peak at 2900 cm\(^{-1}\) due to

Peak at 1700 cm\(^{-1}\) due to
Assign the signals in the boxes provided. (Hints: 1. Br exists as two isotopes 79 and 81, in a 1:1 ratio. 2. Think McLafferty rearrangements and α-cleavages.)
Chemistry 3B, Final Examination

\[m/z \ 194, 196 \ (1:1) \]

\[m/z \ 166, 168 \ (1:1) \]

\[m/z \ 149, 151 \ (1:1) \]

\[m/z \ 121, 123 \ (1:1) \]

\[m/z \ 88 \]
Chemistry 3B, Final Examination

3. 1H NMR Spectrum of B

Draw your suggestion for B in the box below and label the hydrogens A, B, C, D, E giving rise to the correspondingly labeled (below the signals) peaks in the spectrum.
4. 13C NMR spectrum of B

Note that there are six signals (see chemical shift table in the insert).

Draw your suggestion for B in the box below and label the carbons A, B, C, D, E, F giving rise to the correspondingly labeled (above the signals) peaks in the spectrum.
Chemistry 3B, Final Examination

(c) Write a mechanism for the formation of B.
IV. [60 Points] Write detailed mechanisms to explain the following observations.

\[\text{(a)} \quad \text{Reactions: } H^+, H_2O, \Delta \rightarrow \text{Product} + 2 \text{CO}_2 + \text{NH}_3 \]
(b) \[
\begin{align*}
\text{CH}_3\text{CH} & \xrightarrow{\text{NaOH, } \text{H}_2\text{O}} \text{CH}_3\text{CH}=\text{CHCH} \\
\end{align*}
\]
1. \(\text{LiAlD}_4 \)
2. \(H^+, H_2O \) (work up)
V. [60 Points] Provide a reasonable synthetic route from starting material to product. Note: several steps are required and there may be more than one solution to the problem. You may use any additional organic or organometallic reagents, containing four carbons or less, to effect your conversions.

(a) \[
\begin{align*}
\text{starting material} & \rightarrow \\
\text{product} & \\
\end{align*}
\]
(b) \[\text{C}_{6}\text{H}_{6} \rightarrow \text{C}_{6}\text{H}_{4}
\text{ClCH}_{2}\text{NH}_{2}\n\text{CH}_{2}\text{NH}_{2} \]
Chemistry 3B, Final Examination

\[
\begin{array}{c}
\text{H}_3\text{N}^+ + \text{COO}^- \\
\end{array}
\]
VI. [60 Points]

(a) Mark with an arrow, e.g. \(\text{\includegraphics{aromatic-molecule.png}} \), the site of preferential electrophilic attack in the following molecules.

\[\text{CH}_3\text{OCH}_3 \quad \text{CH}_3\text{O-} \text{Thio} \quad \text{CH}_3\text{O-} \text{Thio} \]

(b) The ketopentose A gives only one compound on reduction with \(\text{NaBH}_4 \) (draw in the box below). Explain. Is the product optically active? (circle the correct answer)

\[\text{HO} \quad \text{H} \quad \text{OH} \quad \text{CH}_2\text{OH} \quad \text{NaBH}_4 \]

Product
optically active: yes \(\square \); no \(\square \)

(c) Among the following compounds, circle the ones which are aromatic.

\[\text{\includegraphics{aromatic-compounds.png}} \]

19